Robust Independent Component Analysis Based on Two Scatter Matrices

نویسندگان

  • Klaus Nordhausen
  • Hannu Oja
  • Esa Ollila
چکیده

Oja, Sirkiä, and Eriksson (2006) and Ollila, Oja, and Koivunen (2007) showed that, under general assumptions, any two scatter matrices with the so called independent components property can be used to estimate the unmixing matrix for the independent component analysis (ICA). The method is a generalization of Cardoso’s (Cardoso, 1989) FOBI estimate which uses the regular covariance matrix and a scatter matrix based on fourth moments. Different choices of the two scatter matrices are compared in a simulation study. Based on the study, we recommend always the use of two robust scatter matrices. For possible asymmetric independent components, symmetrized versions of the scatter matrix estimates should be used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent component analysis based on symmetrised scatter matrices

A new method for separating the mixtures of independent sources has been proposed recently in [8]. This method is based on two scatter matrices with the so called independence property. The corresponding method is now further examined. Simple simulation studies are used to compare the performance of so called symmetrised scatter matrices in solving the independence component analysis problem. T...

متن کامل

Complex-valued ICA based on a pair of generalized covariance matrices

It is shown that any pair of scatter and spatial scatter matrices yields an estimator of the separating matrix for complex-valued independent component analysis (ICA). Scatter (resp. spatial scatter) matrix is a generalized covariance matrix in the sense that it is a positive definite hermitian matrix functional that satisfies the same affine (resp. unitary) equivariance property as does the co...

متن کامل

Scatter Matrices and Independent Component Analysis

In the independent component analysis (ICA) it is assumed that the components of the multivariate independent and identically distributed observations are linear transformations of latent independent components. The problem then is to find the (linear) transformation which transforms the observations back to independent components. In the paper the ICA is discussed and it is shown that, under s...

متن کامل

A cautionary note on robust covariance plug-in methods

Many multivariate statistical methods rely heavily on the sample covariance matrix. It is well known though that the sample covariance matrix is highly non-robust. One popular alternative approach for “robustifying” the multivariate method is to simply replace the role of the covariance matrix with some robust scatter matrix. The aim of this paper is to point out that in some situations certain...

متن کامل

Independent Subspace Analysis Using Three Scatter Matrices

Abstract: In independent subspace analysis (ISA) one assumes that the components of the observed random vector are linear combinations of the components of a latent random vector with independent subvectors. The problem is then to find an estimate of a transformation matrix to recover the independent subvectors. Regular independent component analysis (ICA) is a special case. In this paper we sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008